i⁻³ = i¹ = i⁵ = i⁹ = +i i⁻² = i² = i⁶ = i¹⁰ = –1 i⁻¹ = i³ = i⁷ = i¹¹ = –i i⁰ = i⁴ = i⁸ = i¹² = +1 i^(4n) = 1 (n is integer) i^(4n + 1) = i i^(4n + 2) = -1 i^(4n + 3) = -i √i = ±((√2/2)(1+i) √(x+iy) = √[ (r+x)/2 ] ± i √[ (r–x)/2 ] with r = √(x² + y²) ∛i = –i, ½+√3/2, –½+√3/2 ∛(–1) = –1, ½–i√3/2, and ½–i√3/2 ∛(–N) = ∛N[ –1, ½–i√3/2, and ½–i√3/2 ] de Moivre's formula, states that for any complex number (and, in particular, for any real number) x and integer n it holds that" (cos x + i sin x)ⁿ = cos (nx) + i sin (nx) i = √(–1) |
Home
Area, Volume Atomic Mass Black Body Radiation Boolean Algebra Calculus Capacitor Center of Mass Carnot Cycle Charge Chemistry Elements Reactions Circuits Complex numbers Constants Curves, lines deciBell Density Electronics Elements Flow in fluids Fourier's Law Gases Gravitation Greek Alphabet Horizon Distance Interest Magnetics Math Trig Math, complex Maxwell's Eq's Motion Newton's Laws Octal/Hex Codes Orbital Mechanics Particles Parts, Analog IC Digital IC Discrete Pendulum Planets Pressure Prime Numbers Questions Radiation Refraction Relativistic Motion Resistance, Resistivity Rotation Series SI (metric) prefixes Skin Effect Specific Heat Springs Stellar magnitude Thermal Thermal Conductivity Thermal Expansion Thermodynamics Trigonometry Units, Conversions Vectors Volume, Area Water Wave Motion Wire, Cu Al metric Young's Modulus |